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Practical implementations of the Ewald method used to compute Coulomb interactions in molecular dynamics
simulations are hampered by the requirement to truncate its reciprocal space series. It is shown that this can
be mitigated by representing the contributions from the neglected reciprocal lattice vector terms as a simple
modification of the real space expression in which the real and reciprocal space series have slightly different
charge spreading parameters. This procedure, called the α ′ method, enables significantly fewer reciprocal lattice
vectors to be taken than is currently typical for Ewald, with negligible additional computational cost, which is
validated on model systems representing different classes of charged system, a CsI crystal and melt, water and
a room temperature ionic liquid. A procedure for computing accurate energies and forces based on a periodic
sampling of an additional number of reciprocal lattice vectors is also proposed and validated by the simulations.
The convergence characteristics of expressions for the pressure based on the forces and the potential energy
are compared, which is a useful assessment of the accuracy of the simulations in reproducing the Coulomb
interaction. The techniques developed in this work can reduce significantly the total computer simulation times
for medium sized charged systems, by factors of up to ca. 5 for those in the classes studied here.

I. INTRODUCTION

The Ewald method has been used for over fifty years to
compute Coulomb interactions in molecular simulations, [45]
and is routinely included in many molecular simulation pack-
ages. Its inclusion in molecular simulation is expensive and it
does not scale well with system size. The weighting parameter
in the equations is chosen so that the real space series decays
rapidly enough to apply the nearest image convention with
minimal truncation error. The reciprocal space series (REC) is
as a result relatively slow to converge and has to be truncated
before it has converged sufficiently. The problem gets more
severe with increasing system size, which has prompted the
development of particle mesh treatments of the REC. [63] It is
not surprising that so-called truncation methods, which do not
have a reciprocal space component, and can treat the Coulomb
interactions in the same way as the short-range van der Waals
terms have gained in popularity. [53–57] The disadvantage of
truncation methods is there is no established way of quantify-
ing the deviation from the true Coulomb interaction. In con-
trast, the Ewald method involves two series expansions which
are separately more amenable to such analysis.

This work proposes new equations to correct for the ne-
glected reciprocal lattice vectors, cast in terms of adjustments
of the real space series and the self-energy terms, with the con-
sequence that fewer reciprocal lattice vectors need to be used.
In addition, it is shown that significantly improved values of
the Coulomb energy and forces can be obtained by adding a
correction term based on the periodic evaluation of a larger
number of reciprocal lattice vectors. The accurate calculation
of the Coulomb interaction component of the pressure is also
discussed.
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The improved Ewald variant theory is derived in Sec. II. In
Sec. III details of simulation methodology and implementa-
tion are given. Sec IV presents the results of MD simulations
carried out to test the extent to which these new equations
improve the computational efficiency of the Ewald method.
Calculations on a wide variety of different types of charged
system were carried out as part of this exercise. A summary
of the conclusions for this work is given in Sec. V.

II. THEORY

This section is concerned with the ways of deriving gener-
alized Ewald formulas for arbitrary charge spreading function.
A focus is on mitigating the effects of truncating the REC se-
ries, with the usual Ewald formulas which employ a Gaussian
charge spreading function, although the treatment is perfectly
general and can be applied to other charge spreading func-
tions.

A. The Ewald method and ways to derive the formulas

The Ewald expressions for the electrostatic potential en-
ergy, vi, of point charge i in a lattice of point charges may
be written in the general form,

vi = vreal,i + vrec,i + vsel f ,i,

vreal,i = qi ∑
n=0

N′

∑
j=1

q j vr(|ri j +n|,α)

|ri j +n| ,

vrec,i =
qi4π

L3

′
∑
k

N

∑
j=1

q jcos(h.ri j)

h2 φ(h,α),

vsel f ,i = −q2
i Vs(α) (1)

where the specific form of vr,φ(h,α) and Vs(α) depends
on the choice of implicit charge spreading function. [33]
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The function φ(h,α) is dimensionless. The standard Ewald
method (GEw) uses a Gaussian charge spreading function.
The total electrostatic contribution to the system potential en-
ergy, Uc, is,

Uc =
1
2

N

∑
i=1

vi. (2)

Equation (1) and all subsequent equations are for a periodic
array surrounded by a perfect conductor.

To convert to real units the terms in Eq. (1) need to be mul-
tiplied by [4πε0]

−1, where ε0 is the permittivity of free space.
A cubic cell of sidelength, L, is assumed here but the treat-
ment is readily generalizable to other crystal classes. [41] The
cell has a total charge of zero and consists of N charges. The
separation vector between charges i and j is, ri j ≡ ri − r j,
where rl is the location of charge l. The principle is that the
original summation slowly converging series in real space is
replaced by two more rapidly converging series, one in real
space and the other reciprocal space. The real space term,
vreal,i, in Eq. (1) involves a sum of the interactions from within
that cell and its periodic images. The real space lattice vec-
tor is n = (ix, iy, iz)L where iκ = [0,±1,±2, · · · ]iκ ,0 are mul-
tiples of the unit vector iκ ,0 in the κ−direction. The ′ on
the j−summation in the real space term indicates the omis-
sion of the j = i term when n = 0. The reciprocal space
term, vrec,i involves a sum over reciprocal lattice vectors,
h = 2π(ix, iy, iz)/L where the ′ in Eq. (1) signifies the omis-
sion of the h = 0 element term. The last term in Eq. (1) is the
self-energy, vsel f ,i. The self-energy term typically makes up a
significant percentage of the total Coulomb energy.

The adjustable parameter, α , in Eq. (1) controls the
relative contribution from the real and reciprocal series to
the total energy (the latter increases with α). This adjustable
parameter is often expressed in dimensionless form through
the parameter, κ = αL.

There are various ways of deriving the analytic forms of
vr,φ and Vs, which will be considered below.
Ewald derivation via charge spreading functions, CSF

The ‘traditional’ way of deriving these three functions is to
link them separately to an artificial function which describes
the spherically symmetric spreading out of the charges, or
‘charge spreading function’ (CSF), σ(u,α), where u is the
distance from the center of the charge. The original Ewald for-
mula employs a Gaussian CSF, which is referred to as ‘GEw’
here. The application of Eq. (1) for arbitrary CSF is called an
Ewald Variant (EV). In Ref. 33 the CSF, σ(u,α) was defined
in terms of a more basic function, f (u,α) and a normalization
constant, A.

σ(u,α) = A f (u,α), A−1 = 4π

∫ ∞

0
u2 f (u,α) du, (3)

where the volume integral of σ is equal to unity. The moti-
vation to use the substitution σ(u,α) ≡ A f (u,α) is that for
some of the series in Ref. 33, a f (u,α) can be defined where
f (u → 0,α) = 1, which facilitates comparisons between the
extent of charge diffuseness of the various series.

The real space summation quantity Eq. (1) is,

vr =
1
r
− 4πA

r

∫ ∞

0
u2 f (u,α) du,

−4πA

∫ ∞

0
u f (u,α) du, (4)

as discussed in Ref. 33.
The Fourier space lattice quantity is,

φ(h,α) = 4πAh−1
∫ ∞

0
u f (u,α)sin(hr) du, (5)

and the self-energy term Vs is,

Vs = 4πA

∫ ∞

0
u f (u,η) du. (6)

Nine analytic forms of the CSF were considered in Ref. 33,
four of which are of finite extent and go to zero at r = α−1.
CSF of this type were widely used from the 1950s onwards
for a few decades by transforming the entirety of the original
real space r−1 Coulomb lattice summation into its reciprocal
space representation. [34, 51, 52] The range of the CSF was
chosen so they do not overlap in the lattice, which means the
EV term vreal,i = 0, although there is still a self-energy con-
tribution. The series 4 case in Ref. 33 is potentially useful
in a modern context as the potential and its first four deriva-
tives are zero at the real space cutoff which should in principal
confer excellent anti-drift behavior in a simulation. [17]

Other analytic forms for the CSF have been employed in
EV more recently, including a gaussian times a power of
r, [39] and a truncated gaussian. [40] Hünenberger, [36] con-
sidered the convergence characteristics of CSF with algebraic
form and of finite extent.

It is probably fair to state that all the obvious charge spread-
ing functions which are analytically soluble for vr,φ and Vs.
in Eq. (1) have been considered. There is another route to
these three functions which do not rely on choosing a σ(u,α)
in advance, and expand the range of possible EV formulas.
Ewald derivation without charge spreading functions

The real space series pair term potential, vr(r,α), can be
written in terms of the original Coulomb potential and an an-
cillary function, G(r,α) which improves the convergence rate
of the real space summation (e.g., for GEw this is G(r,α) =
erf(αr)/r). Argyriou and Howard derived expressions for the
electrostatic potential, cast entirely as reciprocal space sum-
mation. [35] Equations (15) and (16) in that work lead to,

vr(r) = r−1 −G(r,α),

G(r,α) =
1

2π2

∫ 1
h2 φ(h,α)e−ih·rd3h,

=
2
π

∫ ∞

0
φ(h,α)

sin(hr)

hr
dh, (7)

from Eq. (15) in Ref. 35. The function, G(r,α), can there-
fore be obtained from a choice for φ(h,α). From Eq. (16) in
Ref. 35,

Vs(α) = lim
r→0

G(r,α) =
2
π

∫ ∞

0
φ(h,α) dh, (8)
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from Eq. (7) (see also Ref. 44). Combined use of Eqs. (7) and
(8) enables the terms in Eq. (1) to be obtained solely from an
input analytic form for φ(h,α).

The implicit CSF can be obtained from Eq. (8) in Ref. 38,

σ(u,η) =
1

(2π)3

∫

φ(h,η)e−h·rid3h,

=
1

2π2

1
u

∫ ∞

0
h φ(h,η)sin(hr) dh, (9)

which, importantly, is not required in obtaining the electro-
static potential. Therefore from a proposed analytic form for
φ(k,α), Eqs. (7) and (8) give the necessary formulas to gen-
erate an Ewald-like expression.

Another route is to start from a choice for the analytic form
of G(r,α) as the only required input function. The self-energy
may be obtained from Eq. (8), and φ , by inversion of Eq. (7),

φ(h,α)

h
=
∫ ∞

0
r G(r,α)sin(hr) dr, (10)

and

Vs(α) = lim
r→0

G(r,α) (11)

The advantage of the two routes in Eqs. (7)-(11) is that the
analytic form of σ(r,α) is not needed in advance, and in fact is
not needed at all. A plausible analytic form for either φ(h,α)
or G(r,α), respectively, which can be a more straightforward
exercise may lead to an EV series whose underlying CSF is
not an obvious one to use via the CSF starting point route.
For example, if vr(r,α) = exp(−rα)/r,

G(r) =
1− exp(−rα)

r
, φ(h,α) =

1
[h/α]2 + 1

,

Vs = α, σ(u,α) = α2 exp(−uα)

4πu
, (12)

where σ(u,α) was obtained using Eq. (9), which diverges at
the origin. This is not a problem as σ(u,α) is only needed
when multiplied by u or u2 in an integral, e.g., see Eq. (5)).
The terms in Eq. (12) substituted in Eq. (1) is referred to as
Series 10 in this work (Series 1-9 are given in Ref. 33). It
is not appropriate to use the σ(u,α) ≡ A f (u,α) identity here
because the CSF has a singularity at the origin, and therefore
a f (u,α) cannot be defined which is unity in the zero u limit.
Extension of truncation methods to Ewald

In recent years truncation methods have become popular
as ways of including Coulomb interactions in molecular sim-
ulations. [53–57] The potential and force are truncated at a
specified pair separation, rc and they are treated just as the
short-range van der Waals terms. One way of quantifying the
deviations in this approach from the true Coulomb interaction
is to take the truncated potential term to be vr in the Ewald
method. Then as the Ewald formulas gives the exact Coulomb
energy, the difference or errors in simply truncating will reside
in the reciprocal space term (‘φ ’) and possibly the self-energy
term of Ewald. For all charge interactions where r > rc the er-
ror is given entirely by the reciprocal space term in the Ewald
formulas.

In the following derivations it is convenient to replace α−1

by rc, the potential truncation distance. Consider the follow-
ing CSF,

f (u,rc) = δ (r− rc), A =
1

4πr2
c

(13)

where δ is the Dirac delta function. The function, f (u,rc)
substituted in Eq. (4) for vr and Eq. (6) for Vs gives,

vr(r) =
1
r
− 1

rc

r < rc,

= 0 r > rc, Vs =
1
rc

. (14)

Introducing Eq. (13) in Eq. (5) gives,

φ(h,rc) =
sinhrc

hrc

, (15)

the sinc function. The terms in Eq. (14) constitute the
Shifted Coulomb pair potential and correction term presented
in Eqs. (3.10) and (3.11) in Ref. 54. Therefore the reciprocal
lattice series employing the definition of φ given in Eq. (15)
is the exact expression for the error in the shifted Coulomb
pair potential truncation scheme of Wolf et al.. [54] Equa-
tions (13)-(15) are referred to here as EV Series 11.

The truncated and shifted force (SF) type of potential is
more widely used in simulations as the potential and its first
derivative are zero at the truncation distance, see Eq. (3.17) in
Ref. 54, and it is also discussed in Refs. 25, 55, and 57. The
SF, pair force, fSF is

fSF =−dvr(r)

dr r
(r) =

1
r2 − 1

r2
c

(16)

and the associated potential shifted to be zero at r = rc through
the constant of integration is,

vr(r) =
1
r
−G(r),

G(r) =
2
rc

− r

r2
c

(17)

Equation (10) is used to derive φ directly from G(r). Using
formulas 17.17.2 and 17.17.3 from Ref. 68,

φ(h,rc) =
1

(rch)2

(

2− 2cos(rch)− (rch)2 cos(rch)
)

,

Vs =
2
rc

. (18)

The charge distribution (and henceVs from Eq. (6)) is obtained
in this case using the Poisson equation, ∇2ϕ(r) = −4πσ(r),
where ϕ(r) is the Coulomb potential. As the CSF charge dis-
tribution is spherically symmetric the Laplacian in spherical
coordinates leads to,

∂ 2[rG(r,α)]

∂ r2 = −4πrσ(r,α),

σ(r,α) =
1

2πrr2
c

r < rc (19)
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for this Series, which has a singularity at the origin as does the
σ(r,α) of Series 10. Equations (16)-(19) are denoted by EV
Series 12 here. Series 11 and 12 have quite different charge
distributions. Series 12 does not converge for any value of
rc because of the last term of φ(h,rc) in Eq. (18). It was dis-
cussed by Argyriou and Howard, [35] that φ(h,rc) must decay
more rapidly than h−1 for the summations to converge. This
condition is not met in Eq. (18). For Series 11 the φ(h,rc) is
a sinc function which apparently decays exactly as h−1 but as
it is modulated by a sin function its integral, the Si function
does converge (to π/2 for large arguments). Nevertheless, Se-
ries 10 and 11 are extremely slow to converge. The rate of
convergence can be improved by increasing the value of rc (to
an impractical degree for molecular simulation). It is probably
fair to state that Series 10-12 cannot practicably be included
in molecular simulation, even just for the purpose of quanti-
fying the errors in the shifted potential and force potentials. A
better route to achieve this task would be to generate the sys-
tem using GEw and calculating the shifted force which does
not affect the dynamics as an ancillary operation. The errors
in these truncated real space methods can be determined by
subtraction with the GEw quantity values therefore.

Equations (16)-(18) are denoted by EV Series 12 here.

B. Truncation of the reciprocal space series at h = hc

For computational efficiency in simulation, the REC series
needs to be terminated at a finite reciprocal lattice vector
where the contributions from the neglected terms are not
negligible, which leads to errors and deviations from the exact
Coulomb interaction in the computed electrostatic terms.
Routes to reduce the magnitude of these errors by additional
correction expressions are proposed and tested here.

Correction in reciprocal space

It is computationally efficient to truncate the real space se-
ries at r = rc ≤ L/2, i.e., the usual nearest image restriction
used for a short range potential such as for the Lennard-Jones
interaction. This imposes a lower bound on the value of α
and a limit in the rate of convergence of REC. The recipro-
cal space series vectors are conveniently expressed in integer
form, k= hL/2π =(ix, iy, iz). An upper limit has to be applied
to the number of k vectors considered, such that |k|= k ≤ kc,
where i2x + i2y + i2z ≤ k2

c , and hc = 2πkc/L is specified. Note
that as k2

c is always an integer, then kc can only take certain
discrete values.

An approximate (always positive) expression for the miss-
ing h−vector terms is, [42, 46, 49]

vrec,i(h > hc)≃ q2
i

4α2

πNhc

exp(−(
hc

2α
)), (20)

for N charges in the cell. This is derived by replacing
the REC summation for h > hc by an integral. The main
assumption in the derivation of Eq. (20) is that the charges
are randomly distributed in space so that after averaging the
only non-zero terms remaining involve a charge interacting

with its periodic replicas (the ‘diagonal’ approximation).
The value of hc where this formula is appropriate is ca.

hc > 2πα . [49] These approximations inevitably cause a
mismatch between the exact reciprocal space series and
the correction term at h = hc, whose accuracy is difficult
to quantify. The charge-charge correlations found in ionic
liquids are not included in Eq. (20). In order to incorporate
the effects of charge-charge correlation in correcting for the
REC truncation, an alternative strategy is required.

Correction in real space

An alternative route to account for the missing h > hc terms
which does not have the deficiencies of Eq. (20) is proposed
here. The effect of truncating REC is to cause a deviation
from Coulomb’s law in the modelled system. The real space
series, vr and the self-energy, Vs formulas need to be replaced
by v′r and the self-energy, V ′

s , which take this into account.
The consequence of this is that the screening constant in
the self and real space terms should be hc−dependent. The
formulas derived below have not been used in simulation
previously as far as we are aware. When they are made the
new expressions are denoted with the superscript, ‘′’. Maggs
proposed a correction which was also based on the expression
of the REC truncation (partly) in real space, although the final
expressions and detailed approach are quite different to those
derived here. [50]

Starting from Eq. (7) one can formally include hc in the
Ewald construction as follows,

vr(r,α) = r−1 −G(r,α),

v′r(r,α) = r−1 −G′(r,α),

G′(r,α) =
2
π

∫ hc

0
φ(h,α)

sin(hr)

hr
dh,

δG′(r,α) =
2
π

∫ ∞

hc

φ(h,α)
sin(hr)

hr
dh.

v′r(r,α) = vr(r,α)+ δG′(r,α) (21)

The truncation of the Fourier series at hc is the same as
adding a discontinuous weight function to this series, which
is responsible for the additional real space term, δG′, in
Eq. (21). This new term decays with r in a damped oscilla-
tory manner, which is a general feature of real space func-
tions derived from from truncated summations in reciprocal
space. Templeton also derived an expression for the k ≤ kc

error in a purely reciprocal space formulation of the electro-
static energy of a crystal, [34] in real space. This was ex-
pressed in part in terms of the damped oscillatory sinc func-
tion (i.e., sinc(x) = sin(x)/x). There is no simple analytic ex-
pression for δG′(r,α).

Figure 1 for the GEw case shows that the oscillations in
δG′(r,α) have a periodicity length, l ≃ L/kc and the function
decays slowly with r in an algebraically damped oscillatory
way. This poses a problem for simulation as the real space
terms are usually truncated at rc ≤ L/2. Clearly a real space
series term which extends over several periodic cells is not
practicable in molecular simulation. A compromise solution
is required for efficient simulation which includes a realistic
representation of δG′(r,α) at short distance, but also decays
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k2c = 9

k2c = 4

k2c = 1

r/L

δG
′
(r
,α

)

21.81.61.41.210.80.60.40.20

2

1.5

1

0.5

0

−0.5

FIG. 1. The h−space truncation function expressed in real space as,
δG′(r,α), which is formally defined in Eq. (21), where α = 5.556/L

and L is the sidelength of the repeat cell. The GEw method which
uses a Gaussian charge distribution is considered. The function was
obtained from its definition in Eq. (21) by Simpsons rule numerical
integration.

rapidly enough with distance to be truncated at reasonable val-
ues of rc with minimal energy and force discontinuities at this
distance.

It is convenient to consider first the hc-dependent self-
energy. It follows from Eq. (8), that

Vs(hc) ≡ V ′
s =

2
π

∫ hc

0
φ(h,α) dh,

= Vs −
2
π

∫ ∞

hc

φ(h,α) dh

= Vs − δG′(0,α). (22)

The Ewald self-energy, Vs, is just Vs(hc → ∞). As the integral
on the right hand side of the equation on Eq. (22) is greater
than zero, Vs(hc)<Vs. The self-energy is subtracted from the
other Ewald formula terms, as indicated in Eq. (1). For GEw,

Vs(hc) =
2√
π

α erf(
hc

2α
) =Vs erf(

hc

2α
),

α ′ = α erf(
hc

2α
),

Vs(hc) ≡ V ′
s =

2√
π

α ′, (23)

from Eq. (22). The parameter α ′ ≤ α and approaches α in
the large hc limit. Equation (22) and Eq. (23) for GEw are the
correct formulas for the self-energy in molecular simulation
for finite hc. For GEw, Eq. (23) indicates that, G′(0,α) =
G(0,α ′), and it is tempting to extend this as an approximate
representation of δG′(r,α) for finite r.

The approximation, G′(r,α) ≃ G(r,α ′) cannot be exact for
all r as G(r,α ′) does not exhibit oscillations and it is always
positive. Nevertheless, if G(r,α ′) is in reasonable agreement

with G′(r,α) for small r, its inclusion in the computations
should improve the accuracy of the Ewald energy. In its favor,
the implementation of G(r,α ′) would take into account charge
correlations of the system being modelled, unlike Eq. (20).
Any inaccuracies at large r may be reduced by mutual can-
cellation of their effects arising from different changes in this
distance region.

From this point onwards the GEw with a Gaussian charge
distribution will be considered exclusively. The real space
contribution to the electrostatic energy for GEw involves
erfc(αr)/r, and therefore from Eq. (21),

δG′(r,α) ≃ (erf(rα)− erf(rα ′))
r

≡ δG′
d(r,α). (24)

The value of α ′ decreases as hc decreases which may lead
to physically significant energy and force discontinuities at
the truncation distance. Consequently some fine-tuning of α
and the truncation distance in real space would be required to
obtain optimum accuracy for a given system size if this route
were to be adopted.

An extensive analysis of possible analytic forms for
G′(r,α) based on Taylor expansions of the second term in
Eq. (24) was made. An expansion of the α ′ term in powers
of α ′−α was involved, which leads to additional terms in the
real space summation, but they did not obviously perform bet-
ter than the simple approximation, G′(r,α) =G(r,α ′) adopted
in this study.

Using δG′
d(r,α), and following on from Eqs. (23) and (24),

the α ′ modified Ewald formulas are,

v′i = v′real,i + v′rec,i + v′sel f ,i,

v′r,i = qi ∑
n=0

N′

∑
j=1

q j [
er f c(|ri j +n|,α ′)

|ri j +n| ],

v′rec,i =
qi4π

L3

hc

∑
h>0

N

∑
j=1

q jcos(h.ri j)

h2 exp(−(αh)2/4),

v′sel f ,i = −q2
i

2α ′
√

π
, α ′ = α erf(

hc

2α
). (25)

Equation (25) is a readily implemented simple correction to
the usual GEe formulas, and only requires the replacement of
α by α ′ in the real space and self-energy terms of Eq. (1).
Note that the original α parameter is used in the reciprocal
space summation term. The forces are obtained as usual by
taking the spatial derivatives of the terms in Eq. (25). One way
of looking at Eq. (25) is that some of the energy from the self-
energy of GEw is ‘transferred’ into the real space term. The
α ′ method is illustrated schematically in Fig. 2. Also Eq. (25)
represents a sliding-scale from standard GEw (high kc where
α ′ → α) down to pure 1/r pair potentials (as kc → 0). The
small modifications to standard GEw given in Eq. (25) par-
tially account for the missing terms in the (truncated) recipro-
cal space series.

Table I compares the GEw and α ′ values for the Coulomb
potential energy of a charge in a periodically repeated neutral
cell containing two charges, as a function of the truncation
parameter, kc for two different locations of the second charge
(the first is at the origin of the coordinate system). This is
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FIG. 2. A schematic diagram illustrating the difference between the
standard Ewald method (GEw) and the α ′ variant where the charge
distributions associated with the real space series and the self-energy
are more spread out

the same analysis strategy as was used in Ref. 33. The for-
mulas in Eq. (25) are used. The x−component of the force
on the first charge, Fx, is also given. It may be seen that the
use of Vs(kc) and v′r noticeably improves the convergence of
the total energy. In fact kc = 1 can be used with very good
accuracy for these relative charge separations. The number
of k-vectors associated with k2

c equal to 1,4,9,16 and 25 are
6,33,123,257 and 515, respectively. This table suggests that
a considerable saving in computer time could be achieved by
adopting the hc−corrected terms in the modified Ewald for-
mula of Eq. (25). Table I also shows that data set, a, where
the charges are close together has better relative convergence
as kc is lowered than data set, b, where the charges are fur-
ther apart. Hence the α ′ method summarized in Eq. (25) is
particularly well suited for the model chemical systems con-
sidered in this study where the charges relatively close com-
pared to the simulation cell sidelength dominate the behavior.
There could be certain exceptional real situations, however, in
which the charged ions are weakly screened (e.g., dilute solu-
tions of organic ion pairs in low dielectric constant solvents, or
NaCl in the vapor phase). In these cases longer ranged inter-
actions closer to L/2, representing dissociated ions and other
ions or ion pairs could also be important factors in determin-

TABLE I. The Coulomb potential energy in units of q/L at (0,0,0)L,
from a cubic lattice containing a positive charge, q at (0,0,0)L and
a negative charge, −q, at (x,y,z)L within the unit cell (L is the unit
cell side length). For the first set of data, a, (x,y,z)=(0.1,0,0), and
for the second, b, (x,y,z)=(0.25,0,0). The GEw method (series 6 in
Ref. 33) was used. The reciprocal space summation was carried out
for integer lattice vectors ≤ k2

c , with α = 5.556/L. The real space
summation was conducted for r ≤ L/2. Key: V0 is potential energy
of the origin charge using the original GEw formulas with α . V ′ is
the corresponding energy using α ′ where the formulas in Eq. (25) are
used. Fx,0 and F ′

x are the corresponding forces in the x−direction. α ′

is calculated using the formula in Eq. (23).

k2
c V0 V ′ Fx,0 F ′

x α ′

1a -10.5010 -10.0313 90.9541 99.3873 3.20070
4 -10.2801 -10.1142 95.1652 98.0433 4.94598
9 -10.0751 -10.0482 98.7856 99.2473 5.46426
16 -10.0291 -10.0268 99.4730 99.5122 5.54789
25 -10.0217 -10.0216 99.5650 99.5668 5.55520
36 -10.0213 -10.0213 99.5686 99.5687 5.55555

1b -6.00442 -4.18040 7.34059 14.6453 3.20070
4 -4.91894 -4.35447 13.6043 15.2936 4.94598
9 -4.22804 -4.14047 15.0591 15.2935 5.46426
16 -4.15174 -4.14435 14.7754 14.7948 5.54789
25 -4.14360 -4.14326 14.7523 14.7532 5.55520
36 -4.14324 -4.14323 14.7535 14.7535 5.55555

ing the physical properties of the system. For these cases the
α ′ method may require further optimization.

III. EWALD SIMULATION METHODOLOGY

This section focuses on details of how the GEw and α ′ sim-
ulations are optimally implemented. Some of the methodol-
ogy is new to the literature, particularly Secs. III-D and E,
while other parts are a clarification of known practices.

A. Molecule and Ion Descriptions

Molecular models representing the simple ionic salt cae-
sium iodide (CsI), the polar liquid TIP3P water, and the
room temperature ionic liquid (RTIL) 1-n-hexyl-3-methyl-
imadizonium chloride, denoted [hmim]Cl, were used in this
work, with full details available in Ref. 17. For the CsI model,
the Lennard-Jones (LJ) σ parameter for the ions was changed
from 3.924Å to 4.035Å in order to fit better the experimental
density of 4.51g/cm3 at 298K and 1 atm pressure. The model
for [hmim]Cl was also changed from Ref. 17 by scaling all the
fixed partial charges by 1/

√
2. This procedure exactly halves

the forces between the original partial charges, and may be
considered to account for dynamical polarization effects in a
mean field sense. [18].

The models are all composed of point masses, which carry
LJ interaction sites and point charges, though not always both.
CsI is made up of simple point ions, while TIP3P water con-
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sists of rigid molecules. The RTIL [hmim]Cl ion pair was
composed of free Cl− point ions, while the [hmim]+ molec-
ular cations were composed of 15 sites each (including 3 ex-
plicit hydrogen sites), with 34 constraints, leaving five tor-
sional degrees of freedom per cation. The large number of
constraints in the [hmim]Cl model replaced the many har-
monic potentials that would otherwise be needed to maintain
the molecular geometry with explicit intramolecular degrees
of freedom. The constraints-based molecular model is less
common than force-field based approaches in the literature,
but can be very effective. Using a fast, accurate, and robust
implementation of the SHAKE algorithm [19, 20] all con-
straints were iterated down to machine accuracy (i.e., relative
tolerance < 10−14) each time step. This ensures time rever-
sal symmetry was formally preserved when using the origi-
nal Verlet integrator, [21] which just involved positions and
forces. In addition, shadow Hamiltonians [17, 19] remained
conserved to a high level of accuracy, proving that the equa-
tions of motion were being integrated correctly. The MD sim-
ulations were carried out in the NVE ensemble, with all forces
evaluated every time step. The simulations were carried out
using in-house codes written in modern FORTRAN, on read-
ily available commodity CPUs, that employ standard IEEE-
754 64 bit arithmetic.

For rigid TIP3P water, intramolecular forces are not con-
sidered part of the thermodynamic description of the system.
Therefore, all intramolecular Coulomb interactions were re-
moved in the manner of Sec. II-B of Ref. 17 in which any
corresponding GEw r-space pair interaction, denoted by Y (r),
was replaced by the function Z(r), where

Y (r) =
qiq j

r
erfc(αr), Z(r) =−qiq j

r
erf(αr), (26)

with r the distance between charges, i and j. This removes
the qiq j/r intramolecular interactions from the computed sys-
tem energy. If the α ′ method is used, rather than GEw, then
α ′ replaces α in Eq. 26. For [hmim]Cl certain intramolecu-
lar Coulomb and LJ interactions do remain part of the model.
These correspond to any variable distance interactions be-
tween sites that are at least four bonds apart. Since the
[hmim]Cl model makes use of many constraints, there are no
variable 1,2 or 1,3 intramolecular distances between sites, so
the corresponding LJ interactions are omitted, while Coulomb
interactions are removed in the manner of Eq. 26. Often vari-
able distance 1,4 intramolecular interactions are modelled us-
ing a torsion angle potential which implicitly replaces the 1,4
Coulomb and LJ components too. In Ref. 17 such torsion
angle potentials were omitted to allow the molecules to have
heightened torsional flexibility for demonstration reasons, but
the corresponding 1,4 Coulomb and LJ interactions were still
removed. In this work the same scheme was used. For vari-
able distance 1,5 or further apart intramolecular interactions,
the Coulomb component was included, so partial charges at
opposite ends of the [hmim]+ cation do influence the confor-
mational dynamics.

B. Improving Integration with Smoothing Potentials

It is now well-established[17, 19, 22–24] that the shadow
Hamiltonian of an NVE MD simulation cannot be conserved
when pair potentials are simply truncated at a finite value of
rc. Discontinuities in the force (and higher derivatives) pre-
vent the equations of motion from being integrated correctly.
This is manifested in NVE simulations as a rise in the total
system energy with time, a phenomenon known as ‘energy
drift’, which left unchecked will lead to increasingly large er-
rors in the system’s dynamics and computed quantities. This
is still the case even if a thermostat is used to remove the re-
sulting drift energy, since the underlying equations of motion
would still not be integrated properly and the calculated quan-
tities would be in error as a result. Various methods have been
developed to mitigate against drift, one of the most common
and primary examples being the shifted forces method. [25]
In Refs. 17 and 19 it was shown that drift can be almost com-
pletely eliminated by using smoothing potentials with the sim-
ple functional form

S(r) =
D0

∑
n=0

C2nr2n, (27)

where D0 is the number of potential energy derivatives to be
set to zero at rc. The potential S(r) is added to any simu-
lation pair potential between two sites (such as the LJ or r-
space Ewald terms). The coefficients, C0,C2,C4... can be de-
termined in advance to ensure that the energy, force and any
higher derivatives up to D0 are all zero at rc. As D0 increases,
the equations of motion can be integrated more accurately,
though the perturbation to the system caused by S(r) also in-
creases. When D0 = 1 then S(r) behaves in a similar fashion
to the shifted forces method, although it actually introduces a
smaller system perturbation. However, D0 = 1 is rarely suf-
ficient to maintain conservation of the shadow Hamiltonian
during an NVE simulation. If D0 = 4 the energy drift can be
reduced by six orders of magnitude, and so be virtually elimi-
nated, and in principle equilibrium NVE simulations could be
carried out well into the millisecond regime with no signifi-
cant change in the average temperature. [17, 19] In this work
a value of D0 = 2 was used, which is sufficient to keep even
the worst case temperature drift below 0.01K/µs, and gives
confidence that the equations of motions are integrated accu-
rately.

In simulations with no smoothing treatment, the interac-
tions between sites on two different molecules are often sub-
jected to a molecular cut-off, based on the distance between
molecular centres of mass. This is to prevent artefacts caused
by unbalanced partial charge interactions between molecular
fragments. However, smoothing potentials allow the trunca-
tion at rc to be applied consistently, and individually, to every
site-site interaction in the system. So with smoothing, molec-
ular based cut-offs should actually be avoided, as they intro-
duce new artefacts into a simulation, and can change the av-
erage pressure. This occurs since at each time step certain
site-site interactions with r < rc will be omitted depending on
the relative molecular orientations.
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The smoothing potential, S(r), is a perturbation to any mod-
elled system, and will give rise to unphysical contributions
to the energy, forces, and pressure. Typically, the smoothing
contributions to the energy and pressure have very small stan-
dard deviations, and behave effectively as constant uniform
backgrounds. Therefore these contributions can be excluded
(under appropriate circumstances) when comparing simula-
tion results with experimental data. Also, in a typical MD
simulation, most of the smoothing energy and pressure origi-
nates from the attractive part LJ pair potentials. In contrast, for
the Ewald r−space terms, charge sign differences lead to con-
siderable cancellation of the corresponding smoothing energy
and pressure, so these contributions tend to be very small.

C. Pressure Evaluation

The average pressure is defined from the thermodynamic
definition 〈P〉=−〈 (∂H(r,p)/∂V )T 〉, where H is the Hamil-
tonian, and r and p denote the set of atom positions and mo-
menta, respectively. It is important to calculate pressure ac-
curately in simulations that include Coulombic forces, as the
separate pressure components (e.g., Coulomb or LJ) can indi-
vidually be large in magnitude (> 104 atm) and of different
sign, which largely cancel out, to give a much smaller resul-
tant value for 〈P〉.

In this work, MD simulations were conducted with either
point charge ions, or molecular units whose maximum extent
was smaller than half the length, L, of the cubic simulation
box. This means the concept of a molecular pressure can
be applied simply in the context of periodic boundary con-
ditions (PBCs). In an NVE simulation employing PBCs the
system is thermodynamically stable provided the ‘integrator’
pressure, PI , is positive. PI is the pressure before the addi-
tion of any long range correction terms (LRCs) that are not
associated with the integration of the equations of motion. If
PI < 0 then the system wants to contract, but cannot do so
due to PBCs, and so is metastable. LRCs may make the fi-
nal pressure have a negative value, but they are not related to
thermodynamic stability for NVE and NVT ensembles. This
will not be the case for NPT dynamics, however, as the LRC
to the pressure will affect the thermodynamic state adopted by
the system (note the LRC depends on the current volume of
the simulation cell).
Pressure from the forces

In this work, all molecular units had sufficient rigidity (via
constraints) to make them geometrically invariant, and retain
their original size and conformation, on volume differentiation
(or isotropic volume scaling) of the simulation cell. Even flex-
ible polyatomic ions fall into this class, if all the bond lengths
between adjacent sites are held constant by constraints. Bond
angles and torsion angles are always invariant to affine dila-
tion or contraction, and therefore any occurrence of these in
the system should make no contribution to the pressure. This
leads to a simplification of the expressions for the pressure,
and drawing on previous work [41, 64–66] the total pressure,
Pmol, is conveniently expressed as the sum of the following

contributions

Pmol =
1

3Ω

〈

PA +PB +PC +PD
〉

,

PA = ∑
I

MIṘ
2
I ,

PB = ∑
I

∑
i

∑
J>I

∑
j

dU(rIiJ j)

dr
rIiJ j ,

PC =
1

4ε0Ω ∑
h

(

1/h2 − 1/2α2)exp(−h2/4α2)

×
∣

∣

∣

∣

∣

∑
I

∑
i

qIi exp(ih · rIi)

∣

∣

∣

∣

∣

2

,

PD = −∑
I

∑
i

FT
Ii ·dIi, (28)

where Ω is the MD cell volume. The first term, PA, is the
kinetic component of the pressure, where ṘI and MI are the
center-of-mass (CoM) velocity and mass of molecule, I. In an
NVE ensemble, where the total linear momentum is constant,
a direct calculation of CoM velocities during a simulation is
more accurate than using the expression, PA = ρkB〈T 〉, at the
end of a simulation, where kB is Boltzmann’s constant and ρ is
the molecular number density. In this work the velocities, ṘI ,
were computed using a 6th-order central difference formula,
as discussed in Refs. 17 and 19. Second order velocities lead
to a systematic time step dependent underestimation of the
pressure, which can exceed 10 atm for typical TIP3P water
simulations carried out with δ t = 2fs. This error can exceed
the statistical error in 〈Pmol〉 itself.

Any intermolecular site-site pair potentials, U(rIiJ j), where
rIiJ j is the distance between site i on molecule I, and site
j on molecule J, contribute to the pressure component, PB.
Note the summation excludes any J = I terms, as there are
no intramolecular pair potential contributions to PB. The
pair potential, U(rIiJ j), will be the sum of any LJ, Ewald r-
space Y (r), and smoothing S(r) potentials, up to a distance
|rIiJ j | ≤ rc. All dU(rIiJ j)/dr terms will decay smoothly to
zero at rc, due to the addition of the S(r) potentials.

The k−space contribution to the pressure, PC, involves
all charges qIi, and all k−vectors with 0 < k ≤ kc, where
k = |h|L/2π are normalized k−vector magnitudes. As k2

c is
always an integer, then kc can only take certain discrete val-
ues in PC. The terms involving α in Eq. (28) are only appro-
priate for GEw simulations, and alternative expressions for
PC would be needed for different charge spreading functions.
The last term on the right hand side of the equation for PC,
is the conjugate square of the structure factor, and the i fac-
tor within the exponential denotes

√
−1. Note that the Ewald

self-energy terms make no contribution to the pressure.
The last contribution in Eq. (28), PD, is known as the

‘molecular virial correction’ (MVC), where dIi is the vector
from the CoM of molecule I to site i, and FT

Ii is the total force
acting on site Ii resulting from all k-space terms, and all inter-
molecular pair potential terms. Intramolecular pair potential
forces, and all constraint forces, are omitted from FT

Ii (note
that such forces sum to zero across a molecular unit). Con-
straints therefore have an indirect effect on the pressure, just
as they do for the total system energy, but it is their presence
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that gives rise to the PD term, see Ref. 65. For point ions, such
as Cs+ or Cl−, then dIi = 0, and consequently, PD = 0.
Coulomb pressure from the energy

It is also possible to calculate the Coulomb contribution
to the pressure, by a different route, which we call the ‘en-
ergy method’ (EM) expression. The virial of a system of
free point charges is proportional to the negative of their total
Coulomb energy, UC (calculated from Eq. (1)), from which it
follows that, Pem =UC/3Ω. However, systems that contain in-
tramolecular Coulomb interactions (as opposed to simple free
ions) often need careful treatment when using the EM method.
Intramolecular energy terms can remain invariant with respect
to volume differentiation of the simulation cell, due to the
presence of constraints, and hence will not contribute to the
EM pressure. These considerations lead to the following for-
mula for the EM pressure,

Pem =
1

3Ω

〈

UC +UZ +PE
〉

,

UZ = ∑
I

∑
i

∑
j>i

Z(rIiI j)−Y(rIiI j),

PE = −∑
I

∑
i

FC
Ii ·dIi. (29)

The term, UZ , accounts for the situation in which a model
molecule has a certain number of non-excluded intramolec-
ular Coulomb interactions (which is the case for [hmim]+

cations, but not for TIP3P water). While such interactions
contribute to UC, in the normal way, the presence of con-
straints means their volume derivative is actually zero. There-
fore since from Eq. (26), Z(r)−Y (r) =−qiq j/r, the UZ term
subtracts such energy terms out from UC to ensure the energy-
based pressure calculation is correct.

The presence of constraints also means that Pem needs the
MVC term, PE in Eq. (29). Here FC

Ii is the total Coulomb force
on site Ii resulting from all k-space and intermolecular Ewald
r-space terms. In addition, every intramolecular Coulomb in-
teraction contributes to FC

Ii using forces based on Z(r), and
not Y (r) (even if these interactions normally contribute Y (r)
forces into the MD integrator).

For point ions, UZ = 0, and since d= 0, then the expression,
Pem =UC/3Ω, is obtained, as expected. For TIP3P water, each
molecule has all three intramolecular Coulomb interactions
(two O-H and one H-H) excluded from the model thermo-
dynamics. There are no included intramolecular interactions,
and therefore, UZ = 0. The contribution to PE from the three
Z(r) intramolecular Ewald terms is a constant throughout a
simulation, as expected for a fully rigid species. A typical
value of PE in this work, for TIP3P water, is ≈−2300±10−12

atm. The extremely small standard deviation is an indication
of how well the constraints are maintained i.e., to < 1 part in
1014.

For [hmim]+ cations, 11 out of 15 sites carry a partial
change, giving rise to 55 intramolecular Coulomb interactions
per cation. Of these, 41 are excluded from the model thermo-
dynamics (just like the three for TIP3P water) but 14 remain,
and these contribute fully to the system Coulomb energy, UC.
However constraints mean their volume derivative is zero, so
UZ for a [hmim]+ cation is composed of 14 terms of the form

Z(r)−Y (r). For PE , all 55 intramolecular Coulomb inter-
actions make a contribution to FC

Ii via the Z(r) pair potential
terms. Since the cation is flexible, and some partial charges
can move relative to each other, PE varies every time step,
with a standard deviation of ≈ 1 atm.

The total system pressure can be evaluated using Eq. (28)
alone, or the non-Coulomb parts can be found from appropri-
ate terms of Eq. (28), with the Coulomb contribution being
provided by Eq. (29). Either method will yield an identical
average pressure, 〈P〉, in the limit of large rc and kc, although
their instantaneous pressure fluctuations will be different. If
we define Pmol

C as the Coulomb contribution to Pmol, then with
increasing rc and kc, the expression Pem will converge faster
than Pmol

C , and so can save computational resources. Also the
EM route might be considered a more accurate way of finding
the Coulomb pressure, given fixed rc and kc. However, any ap-
proximation in the calculation of UC will cause Pem to deviate
from the true simulation Coulomb pressure (which can always
be found using Eq. (28)). Also Pem is only valid for simula-
tions that use a formally correct method (such as the Ewald
summation) to reproduce the long ranged Coulomb 1/r inter-
action. More approximate methods (e.g., reaction field, Wolf
Potentials, shifted force potentials [29]) including the new α ′

method of Eq. (25) should not use the Pem definition of pres-
sure as the fundamental Coulomb relation Pem =UC/3Ω is no
longer valid. The quantity

∆P = Pmol
C −Pem, (30)

is therefore a key measure of the accuracy of the implemen-
tation of the long range 1/r Coulomb interactions within a
simulation. If ∆P is statistically different from zero, then a
deviation away from the 1/r law is certainly present.

For LJ interactions, standard LRCs are applied beyond rc

to correct the pressure.[45] The repulsive part of such LRCs
should not be omitted, as with a relatively short rc this contri-
bution can exceed the statistical error in 〈P〉. Simple LRCs are
inaccurate for crystalline systems, as g(r) does not tend to 1
until very large r, particularly at low temperature. A possible
solution is to use the Ewald method for LJ interactions too,
for systems where g(r) is not ≈ 1 beyond rc, [67] but this has
not been pursued in this work. The S(r) smoothing potentials
(see Eq. (27)) have no LRCs, since they are only defined for
r ≤ rc.

D. Estimating the rc and kc truncation errors

GEw summations would ideally use very large values for rc

and kc, to ensure accurate calculation of the Coulomb energy,
forces and pressure. However, in practice, both rc and kc have
more modest values to keep CPU times down. Therefore it is
important to know the effects introduced by the rc and kc trun-
cation. The Kolafa & Perram (KP) force error estimates [42]
have been used for several decades for this purpose. However,
the approximations inherent in KP estimates means they are
inaccurate for crystalline systems, and simulations that em-
ploy particularly small kc values. Since a major aspect of this
work is to show that simulations can be performed using lower
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FIG. 3. Schematic drawing of the ‘extended shell’ (ES) method (see
Sec. III-D). Every time step, Ewald forces are evaluated using r < rc

and k ≤ kc, and used in the MD integrator. Every ca. 25 time steps,
the energy, pressure, and other quantities are also determined using rc

and kc. To estimate the effects of the rc,kc truncation, every ca. 100
time steps, the energy, pressure, and forces, FA, are also determined
in the (‘extended’) region rc < r < rA and kc < k ≤ kA. These are
known as ‘ES corrections’. The values of rA,kA are chosen so that
contributions from beyond are of no statistical significance.

kc than was hitherto thought possible, it is important to have
more reliable estimates of the energy, force, and pressure per-
turbations associated with truncated rc and kc.

Figure 3 shows a schematic diagram of an ‘extended shell’
(ES) scheme which allows the effects of rc and kc truncation
to be quantified accurately with little extra CPU cost. In this
procedure, the simulation is conducted with the default values
of the rc and kc truncations, but at well-separated time steps
the additional energy using a larger truncation in real and re-
ciprocal space is calculated. The contributions from the shells
bounded by rA−rc and kA−kc do not affect the dynamics, but
play a similar role to the ‘long-range corrections’ employed in
Lennard-Jones simulations, for example. The ES corrections
are averaged over the simulation, and then combined with the
average energies from r ≤ rc and 1≤ k ≤ kc, to provide a more
accurate final value for the Coulomb energy and pressure. ES
forces are not included in the MD integrator, but they can be
used to determine the perturbations from the true force aris-
ing from the rc and kc truncation, this being more accurate
than the KP error estimates. For an α ′ simulation (i.e., one
based on Eq. (25)) the k-space component of the ES correc-
tions is taken to be zero, as the α ′ method implicitly accounts
for the truncation at kc, but r−space ES corrections are still
valid. Suitable values of rA and kA, for a particular simulation,
can be determined by requiring the sum of ‘missed out’ ES
corrections beyond rA and kA (the outermost ring in Fig. 3) to
have magnitudes below the standard errors in the mean for the
simulation’s Coulomb energy, total force, and total pressure.

These statistical errors are denoted σ〈UC〉, σ〈F〉, and σ〈P〉, re-
spectively. The magnitude of ‘missed out’ r-space and k-space
ES corrections can be found, as a function of rA and kA, by us-
ing histogram techniques within short simulations of ≈ 104

time steps. For the simulations in this work, rA and kA were
set so that any ‘missed out’ ES corrections were a factor of
10 below the production run values of σ〈UC〉, σ〈F〉, and σ〈P〉,
so it was certain that nothing of statistical significance was
omitted. Since for α ′ simulations, k-space ES corrections are
not required, only the value of rA need be determined, but for
consistency, rA was set to L/2 for all α ′ simulations in this
work.

The optimal frequency for calculating the ES extended dis-
tance and reciprocal lattice vector corrections can be deter-
mined from the statistical inefficiencies of the saved ES data
sets. For the CsI melt this equates to ca. every 400 time steps,
but for all production simulations in this work, a frequency
of once every 100 time steps was used. The evaluation of ES
corrections typically increases the total simulation CPU time
by only a few percent, but yielded considerably more accu-
rate values for the computed energy and pressure. In Ref. 17
the magnitude of the k-space force errors was evaluated us-
ing a rudimentary version of the ES method, which has been
developed more fully in this work.

E. Ewald Force Perturbations

Since the forces acting on particles are of primary impor-
tance in MD, it is desirable to know the extent to which the
ideal Coulomb forces are perturbed by the rc and kc trunca-
tions, and by the addition of any smoothing potentials used to
conserve the shadow-Hamiltonian. The truncation perturba-
tion forces within an Ewald MD simulation can be defined as
follows

FE = FC +Fa

FE = forces within a perfect Ewald calculation (rc,kc → ∞)
FC = forces when r ≤ rc, k ≤ kc

Fa = additional forces due to rc < r ≤ ∞, kc < k ≤ ∞. (31)

The Coulomb related forces incorporated within the MD inte-
grator are,

FI = FC +FS, (32)

where FS represents any applied Ewald r-space smoothing
force (see Sec. III-B). From Eq. (31) this gives

FI = FE −Fa +FS, (33)

from which the total perturbation force FP (the difference be-
tween integrator forces and exact Ewald forces) can be defined
as

FP = FI −FE ,
= FS −Fa. (34)

In an MD code, FC and FS are calculated exactly, and a very
good estimate of Fa comes from the forces FA calculated by
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the ES method (Sec. III-D and Fig. 3), in which rA and kA

replace ∞ in the last line of Eq. (31). The root mean square
(rms) magnitude of FP,

F rms
P =

〈(

1
N

N

∑
i=1

(

Fi
P

)2

)1/2〉

, (35)

gives a measure of the force perturbation, where 〈...〉 denotes
an average over simulation configurations, and Fi

P is the per-
turbation force acting on site i. The quantity F rms

P can be nor-
malized by the corresponding rms of the total force acting on
sites, F rms

T , composed from all contributions within the sys-
tem, including any LJ and constraint forces. Thus the quantity

∆F = F rms
P /F rms

T , (36)

can be treated as a measure of the simulation accuracy. This
analysis of the Ewald perturbation forces is only possible be-
cause actual vector estimates for FA can be calculated using
the ES method. It cannot be performed with KP (or similar)
force error estimates, as they only yield a single scalar num-
ber.

IV. RESULTS AND DISCUSSION

Microcanonical ensemble (NVE) molecular dynamics sim-
ulations were performed to demonstrate the methodology of
Secs II and III, using the basic MD simulation parameters
given in Table II. The rc values used were relatively short,
moving more of the Coulomb calculation into k-space. This
reduced the r-space computational effort as the average num-
ber of r-space force interactions evaluated per site per time
step, N(rc) scales approximately as ρr3

c .
Table III presents the Ewald parameters for four classes of

simulation involving different phases and types of chemical
system, which are denoted by :1 to :4. The :1 class are accu-
rate GEw simulations in which α and kc were tuned so all the
ES corrections were equal or below the corresponding statisti-
cal errors. The :1 calculations therefore give essentially exact
results for their lengths. If longer simulations were conducted
the statistical errors would fall, and consequently α and kc

would need to be larger. The :2 computations are GEw simu-
lations with lower α and kc values. The :3 GEw simulations
had very low α and kc values. The :4 cases are α ′ simulations
where k2

c = 6, which is an exceptionally low value. The κ ′

values for :4 runs are very close to 7 in Table III.
Table III summarizes the performance characteristics of the

different model chemical systems, primarily in terms of the
nominal number of k-vectors required to calculate the k-space
forces within the MD integrator, N(kc), and the corresponding
number for the ES corrections, N(kA). However, in practice
the k-vector based computations can be reduced, and these
values are denoted by Nopt(kc) and Nopt(kA), respectively.
This is because a typical MD code will exclude half of all
k-vectors, as the contributions from k and −k are identical,
hence the remaining forces are doubled. Only half the actual

number of k-vectors need to be considered explicitly. Fur-
ther optimization is possible since when a cartesian compo-
nent β of a k-vector is zero then exp(ikβ rβ ) = 1 and the com-
putation of that element is faster. For example, for the case
k = (1,0,0) the force can be calculated three times faster than
for k = (1,1,1). Therefore, Nopt(kc) and Nopt(kA) are mea-
sures of the computational effort required.

The proportion of such zero components rises as kc falls,
reaching 25% when k2

c = 6. Thus Nopt(kc) is always less
than N(kc)/2 in Table III. The effective computational ef-
fort needed to calculate the ES corrections is minor, as they
are only evaluated once every 100 time steps. Consequently,
Nopt(kA) is always much smaller than N(kA).

The CsI crystal simulations were performed at 295 K. For
the TIP3P water and CsI melt systems, the respective temper-
atures were 323 K and 1230 K, these being midway between
experimental melting and boiling points. Calculations of 106

time steps were sufficient to obtain good statistics for the CsI
and water systems. For the [hmim]Cl system, the temperature
was set at 373 K, this being the upper limit of what might be
considered to be a ‘room temperature’ ionic liquid. A higher
temperature was chosen to enhance the rate of exploration of
the phase space, which gave a [hmim]+ cation diffusion co-
efficient of 3.5 × 10−6cm2/s. Simulations of 4 × 106 time
steps (12.8 nanoseconds) were needed to produce rapid con-
vergence of statistical errors, estimated using the block aver-
aging technique. For all simulations, the data were saved ev-
ery 25 time steps, with ES corrections only being calculated
every 100 time steps.

Calculated quantities from benchmarking simulations are
given in Tables IV to VII for the different chemical systems.
The energies, forces and pressures are given in model LJ re-
duced units per site, which are the same units as those used
in Figs 4 to 8. By comparing the quantity averages from the
simulations through the series, :1 to :4, the trends introduced
by lowering α and kc can be quantified, as well as the effect
of switching from GEw to α ′ simulations at very low kc.

The uncorrected Coulomb energy, UC and its statistical
error were calculated. The corresponding ES correction
Coulomb energy is denoted by UES

C . For all the :1 simula-
tions, the value of UES

C was equal to or less than the statistical
error in UC, which confirms that the :1 class of simulation gave
essentially exact GEw properties.

Figure 4(a) presents the Coulomb potential energy compo-
nent, UC, as a function of kc for the model CsI crystal. The
ES corrections greatly improve the accuracy for low kc GEw,
bringing them very close to the exact UC value. This is also
the case for α ′ simulations, where the limiting UC is recov-
ered at k2

c = 6. Such good results might be expected for the
ordered environment of a crystal. In the CsI melt, shown in
Fig. 4(b), both the low kc GEw simulation, and the α ′ simula-
tion at k2

c = 13 give excellent agreement with the exact result.
For the molecular TIP3P water and [hmim]Cl systems, the
deviation of UC away from exact values is much less than for
CsI as kc is reduced, and the size of UES

C corrections are also
much smaller. This is not surprising as Coulomb interactions
in point ion systems are typically larger than those between
partial charges on molecular sites. An accurate estimate of
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TABLE II. NVE simulation parameters used in the simulations of the four system types. N is the total number of sites, δ t the time step, ρ the
density, and L the box length. The r-space cut-off is rc, while N(rc) is the average number of r-space force interactions evaluated per site per
time step. PLJ−LRC is the Lennard-Jones (LJ) long range pressure correction (see Sec. III-C). Values of δ t,ρ,L,rc, and PLJ−LRC are given in
model LJ reduced units. For the systems used in this work we chose one of the LJ interactions to represent the unit of energy and length. In the
case of CsI and TIP3P there is only one LJ interaction, but for the RTIL there are several, and the N-N interaction was chosen. For CsI the LJ
σ was 4.035 Å and ε/kB was 257.4 K. The corresponding numbers for the model water molecule were, 3.1506 Å and 76.58 K. For [hmim]Cl
these number are 3.25 Å and 85.548 K. The energy and pressures herein were given in these basic units, specific to each system. Patm is the
pressure conversion factor from model LJ reduced units to atm.

System N δ t δ t/fs ρ ρ/(g/cm3) L rc rc/Å N(rc) PLJ−LRC Patm
CsIC (crystal) 1024 0.0032 10.18 1.391 4.567 9.029 2.646 10.7 56.0 −1.747 533.9
CsIM (melt) 1024 0.0022 7.00 0.877 2.880 10.530 3.08 12.4 53.3 −0.441 533.9
TIP3P water 1536 0.005044 2.00 3.02682 0.965 7.976 2.5 7.9 97.7 −1.089 338.1
[hmim]Cl 2048 0.002396 3.20 1.565 0.959 10.938 3.2 10.4 103.4 −1.347 339.6

TABLE III. Ewald related parameters used in the simulations. The splitting parameter is α and κ = αL, where L is the simulation cell
length from Table II. Corresponding values are given for α ′ simulations. The k-space cut-off is kc (where k2

c is an integer) and N(kc) is
the corresponding number of k-vectors. The extended shell (ES) cut-offs are kA and rA, while N(kA) is the number of additional k-vectors
considered. 〈T 〉 is the average simulation temperature in Kelvin. The α , α ′ and rA parameters are given in model LJ reduced units.

Run α κ α ′ κ ′ k2
c N(kc) Nopt(kc) k2

A N(kA) Nopt(kA) rA 〈T 〉/K
CsIC:1 1.274 11.503 - - 113 5040 2342 192 6034 29.0 rc +0.34 295.15(3)
CsIC:2 1.002 9.047 - - 53 1646 735 82 1472 6.9 rc +0.96 295.09(3)
CsIC:3 0.816 7.368 - - 20 388 160 64 1720 8.0 rc +1.78 295.09(3)
CsIC:4 1.000 9.029 0.772 6.970 6 80 30 - - - L/2 294.98(3)

CsIM :1 0.984 10.362 - - 98 4066 1881 125 1820 8.6 rc +0.30 1229.8(2)
CsIM :2 0.898 9.456 - - 69 2468 1124 105 2084 9.9 rc +0.58 1230.2(2)
CsIM :3 0.695 7.318 - - 18 340 140 69 2128 9.8 rc +1.60 1229.7(2)
CsIM :4 0.850 8.951 0.660 6.945 6 80 30 - - - L/2 1229.3(2)

TIP3P:1 1.231 9.819 - - 93 3790 1749 129 2396 11.4 rc +0.30 322.89(5)
TIP3P:2 1.127 8.989 - - 62 2102 955 106 2522 11.9 rc +0.56 322.83(5)
TIP3P:3 0.911 7.266 - - 21 436 184 61 1570 7.2 rc +1.24 322.88(5)
TIP3P:4 1.100 8.774 0.864 6.889 6 80 30 - - - L/2 322.81(5)

[hmim]Cl:1 0.895 9.790 - - 69 2468 1124 93 1322 6.2 rc +0.18 373.1(2)
[hmim]Cl:2 0.864 9.450 - - 59 1934 875 88 1496 7.0 rc +0.30 372.5(2)
[hmim]Cl:3 0.680 7.438 - - 25 514 217 54 1228 5.7 rc +1.22 372.9(2)
[hmim]Cl:4 0.850 9.297 0.644 7.049 6 80 30 - - - L/2 372.5(2)

the total potential energy (including LJ terms) in the limit of
infinite rc,kc is

Ufinal = UC +UES
C +ULJ+ULJ−LRC, (37)

where ULJ−LRC is the Lennard-Jones long range correc-
tion. Unphysical smoothing energy terms are excluded from
Eq. (37), since these tend to zero for infinite rc. The values of
Ufinal in Tables IV to VII do not vary significantly from :1 to
:4, showing that even very low kc simulations can give accu-
rate energies.

In Tables IV to VII, F rms
T is the total rms force magni-

tude from all integrator contributions (i.e., Coulomb, LJ, con-
straints and smoothing). The statistical error for this whole
system quantity is also given. F rms

C is the Coulomb rms force
magnitude alone. Note that the ES correction forces are not
included, as these are not used to integrate the equations of
motion. The quantity ∆F is related to the size of Ewald pertur-
bation forces, see Eq. (36). The k-space and r-space Kolafa-
Perram force error estimates are denoted FKP

k and FKP
r while

the corresponding, and much more accurate, ES force correc-
tions are denoted by FES

k and FES
r . For some simulations, the

KP errors are over an order of magnitude too large (e.g., see
run TIP3P:3 in Table VI) and are therefore not suitable for
optimizing such simulations.

Figure 5 shows the kc dependence of the Coulomb compo-
nent of the force F rms

C and the total force, F rms
T , which includes

all system contributions (i.e., Coulomb, LJ, constraints, and
smoothing). Fig. 5(a) is for TIP3P water and Fig. 5(b) is for
[hmim]Cl. It is notable how little variation there is in F rms

T

and F rms
C with kc, particularly for TIP3P water. For [hmim]Cl

it is the very low kc and α ′ cases that show closest agreement
with the limiting values. TIP3P water is unique among the
systems in this work in having F rms

C > F rms
T , which is due to

the large number of closely spaced H and O sites on different
molecules. This gives rise to large Coulombic forces, which
are mitigated by the LJ and constraint force components.

The integrator pressure, PI in Tables IV to VII, is Pmol

(Eq. (28)) before any long range corrections are included, and
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TABLE IV. Calculated thermodynamic quantities from CsI crystal simulations carried out at 295 K. The first column of data is the ‘exact’
result and the last column is for the α ′ method. See Sec. IV for the definitions of the quantities in this table.

Simulation CsIC:1 CsIC:2 CsIC:3 CsCI:4
UC −145.0601(6) −145.2125(6) −145.4504(6) −145.6827(6)

UC +UES
C −145.0595 −145.0583 −145.0561 −145.0633

σSC
/σUC

0.000068 0.0043 0.051 0.088
UFinal −147.5696 −147.5700 −147.5560 −147.5587
F rms

T 80.52(1) 80.52(1) 80.32(1) 80.13(1)
F rms

C 37.19 37.17 37.08 36.88
log10(∆F) −3.78 −3.00 −2.00 −2.04
FKP

k /FES
k

4.5 3.7 12.0 -
FKP

r /FES
r 3.0 4.5 6.6 7.1

PI 3.994(3) 4.737(3) 3.458(3) 3.139(3)
PFinal −0.070 −0.080 −0.005 0.073
Pem −67.260 −67.330 −67.441 −67.548

P
ES,k
em 0.000 0.055 0.003 -

P
ES,r
em 0.000 0.016 0.179 0.287

Pmol
C −67.261 −66.720 −69.018 −69.761

P
mol,ES,k
C

−0.002 −0.795 −0.044 -
P

mol,ES,r
C

0.004 0.256 1.804 2.552
∆P 0.000 0.000 0.000 0.052

k-space speed up 1 3.2 14 78

is positive in all cases (indicating thermodynamic stability).
The statistical error for this whole system quantity is also
given. The estimate of the pressure in the limit of infinite rc

and kc is

PFinal = Pmol +P
mol,ES
C +PLJ−LRC−PS, (38)

where P
mol,ES
C is the ES Coulomb pressure correction, PS is

the unphysical contribution to the pressure due to the smooth-
ing forces, and PLJ−LRC is the long-range correction to the
Lennard-Jones pressure. The :4 α ′ simulations have slightly
higher pressures than the GEw cases. Breakdowns of the
Coulomb pressure contributions for CsI (crystal), CsI (melt),
water, and the RTIL are given in Tables IV to VII, respec-
tively, for both the faster converging Pem ‘energy method’
(see Eq. (29), and the slower to converge but formally cor-
rect, Pmol method. The corresponding k-space and r-space ES
corrections are also given in the tables. For all the (‘exact’)
:1 simulations, the ES corrections for Pem are zero within sta-
tistical error, indicating that the Pem pressure had converged
fully. Slightly higher α,kc values would be needed for the ES
corrections to Pmol to be essentially zero.

Figure 6 presents the average simulation pressure calcu-
lated for the same CsI simulations as for Fig. 4. Figure 6(a)
shows the pressure for the CsI crystal, and Fig. 6(b) is for the
CsI melt as a function of kc. The figure shows how PI and
PFinal vary with kc in both cases. For the crystal, the figure
indicates that the values of PFinal for kc ≤ 6 α ′ are in good
agreement with the exact GEw value. In the CsI melt case,
the PFinal agreement with α ′ is not so good, but the increase
in pressure seen for the α ′ model is minor in absolute terms
by MD standards for such systems. Similar results to the CsI
melt were obtained for TIP3P water and [hmim]Cl, which is
not surprising as they are also liquids.

Figure 7 shows the important quantity, ∆P, defined in

Eq. (30) for the four chemical systems, which in effect gives a
measure of how closely a simulation implements the Coulomb
1/r law. It is seen that ∆P remains at zero, within statistical er-
ror, for all the GEw simulations of every system. This shows
that even very low α and kc GEw simulations still maintain the
formal 1/r Coulomb law, and that the large ES corrections for
the :3 simulations must be very accurate. For the α ′ runs, the
approximations introduced by Eq. (25) do result in some devi-
ation away from the 1/r Coulomb law, but at very low kc the
magnitude of ∆P becomes relatively small. Therefore, in an
α ′ simulation, the Coulomb pressure is slightly less negative,
and consequently the charged particles behave as if they were
very slightly larger. Within a constant pressure simulation, a
very small increase in the cell volume would compensate for
this.

The last row in Tables IV to VII is denoted ‘k-space speed
up’ and shows the relative k-space CPU saving compared to
the ‘exact’ :1 simulations. These are determined from the
Nopt(kc) and Nopt(kA) values given in Table III. For :3 runs,
and particularly for the :4 α ′ runs, the speed up factors are dra-
matic, and virtually eliminate the k-space CPU, so the r-space
interactions then dominate the simulation CPU time. Since
the r-space cut-offs, rc, were also set to fairly low values in
this work, then both :3 and :4 simulations represent very fast
charged particle simulations, with little compromise on the
accuracy of the resulting forces, energies and pressures.

Constant volume heat capacities obtained from α ′ simula-
tions never deviate by more than 3% from exact GEw results.
Pair correlation functions, g(r), are almost indistinguishable
between exact GEw and α ′ simulations, indicating that the
structural differences with the α ′ simulations are negligible.
Correlation and relaxation times for some quantities do de-
crease slightly in very low kc α ′ simulations, and this is ex-
pected, as the simulations become more like short rc pair-
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TABLE V. Simulation data from the CsI melt simulations at 1230 K. The first column of data corresponds to the ‘exact’ result and the last
column is for the α ′ method. See Sec. IV for definitions of the quantities.

Simulation CsIM:1 CsIM :2 CsIM:3 CsMI:4
UC −132.851(2) −132.877(2) −132.777(2) -132.716(2)

UC +UES
C −132.850 −132.859 −132.851 -132.910

σSC
/σUC

0.00091 0.0026 0.053 0.084
UFinal −131.325 −131.333 −131.299 −131.347
F rms

T 149.34(3) 149.43(3) 149.35(3) 149.27(3)
F rms

C 101.00 100.99 100.85 100.60
log10(∆F ) −3.63 −3.00 −2.00 -2.05
FKP

k /FES
k

1.1 0.8 5.3 -
FKP

r /FES
r 1.1 1.1 1.3 1.3

PI 1.079(6) 1.153(6) 1.037(6) 1.073(6)
PFinal 0.071 0.079 0.194 0.416
Pem −38.837 −38.844 −38.815 −38.797

P
ES,k
em 0.001 0.006 0.011 -

P
ES,r
em 0.000 −0.001 −0.032 −0.057

Pmol
C −38.823 −38.729 −38.344 −38.034

P
mol,ES,k
C

−0.009 −0.095 −0.100 -
P

mol,ES,r
C

−0.002 −0.014 −0.392 −0.629
∆P 0.001 0.001 0.001 0.191

k-space speed up 1 1.7 9.2 63

TABLE VI. Simulation data from the TIP3P water simulations at 323 K. See Sec. IV for definitions of the quantities. The first column of data
corresponds to the ‘exact’ results and the last column is for the α ′ method.

Simulation TIP3P:1 TIP3P:2 TIP3P:3 TIP3P:4
UC −23.260(2) −23.266(2) −23.269(2) −23.264(2)

UC +UES
C −23.258 −23.263 −23.263 −23.267

σSC
/σUC

0.00045 0.0058 0.041 0.071
UFinal −20.314 −20.317 −20.312 −20.319
F rms

T 150.78(3) 150.68(3) 150.65(3) 150.24(3)
F rms

C 482.41 482.50 482.55 482.33
log10(∆F ) −3.64 −3.01 −2.04 −2.03
FKP

k /FES
k

1.2 2.5 11.0 -
FKP

r /FES
r 1.2 1.3 1.4 1.5

PI 2.47(1) 2.50(1) 2.57(1) 2.74(1)
PFinal −0.03 −0.03 0.04 0.27
Pem −84.01 −84.01 −84.05 −84.02

P
ES,k
em 0.00 0.01 0.02 -

P
ES,r
em 0.00 0.00 −0.01 −0.01

Pmol
C −83.98 −83.97 −83.93 −83.72

P
mol,ES,k
C

−0.03 −0.05 −0.06 -
P

mol,ES,r
C

0.00 0.00 −0.03 −0.05
∆P 0.00 0.00 0.00 0.27

k-space speed up 1 1.8 13 59

potential systems, and have less k-space imposed long range
order.

The results above show that accurate simulations can be
carried out with very low kc values. However, for systems
with very low α or α ′ values, the size of perturbation and
smoothing forces must be monitored, especially if rc has been
made fairly small too. For the :3 and :4 calculations in Ta-
bles IV to VII, the values of α and kc were tuned so that
∆F ≤ 0.01 (see Eq. (36)) to ensure Ewald perturbation forces
never exceeded 1% of the total F rms

T force. In addition, α and
kc were tuned to ensure the standard deviation of the Ewald r-

space smoothing energy is at least a factor of 10 below that for
the total Coulomb energy, so σSC

/σUC
≤ 0.1. While it is pos-

sible to ignore the two criteria suggested above, as was done
for the k2

c = 5 and k2
c = 4 α ′ simulations reported in Figs. 4

to 7, it has to be acknowledged that smoothing forces begin to
play a significant role in these simulations.

Figure 8(a) shows the instantaneous values of UC and SC as
a function of time for the [hmim]Cl system. The fluctuations
in SC are seen to be much smaller than those in UC. This figure
indicates the degree to which the Ewald r-space smoothing en-
ergy, SC, can be considered to act like a uniform background
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FIG. 4. The kc dependence of the Coulomb energies, UC from GEw
and from the α ′ (‘AP’) simulations, for CsI (a) crystal and (b) melt
systems. Data for the extended shell (‘ES’) are included on the fig-
ure. The limiting value is that of the highest kc GEw simulation,
where UES

C is zero within statistical error. The GEw and kc =
√

6
points are from data given in Tables IV and V. The α ′ simulations
used the same α values as the :4 cases in Table III.

in relation to the total Coulomb energy UC. The ratio of the
standard deviations, σSC

/σUC
, was 0.048 for this simulation,

which indicates that the smoothing contribution can be con-
sidered to act essentially as a uniform background which only
very weakly perturbs the thermodynamic state of the system.
Figure 8(b) shows the time dependence of the NVE ensem-
ble nominal Hamiltonian energy, E0, compared to the shadow
Hamiltonian, Es. Note the fine resolution on the y-axis. The
E0 is noisy while Es is extremely flat, with just a few minor
outliers. The corresponding drift rate for the [hmim]Cl:4 run
was 0.006 K/µs, which is extremely small by literature stan-
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FIG. 5. The kc dependence of the total (‘FT’) and Coulomb (‘FC’)
rms integration forces for GEw and α ′ simulations, for (a) TIP3P
water and (b) [hmim]Cl systems. Note that ES correction forces are
not included, as these are not used to integrate the equations of mo-
tion. The limiting values are those of the highest kc GEw runs. The
GEw and kc =

√
6 points are from data in Tables VI and VII. The α ′

(‘AP’) simulations used the same α values as the :4 runs in Table III.

dards, and implies a 1 millisecond simulation would only pro-
duce a temperature rise of 6 K, thus showing the high quality
of the MD integration. Without smoothing forces, drift rates
above 100 K/µs were observed, indicating the underlying in-
tegration of the equations of motion was deficient.

For the CsI crystal the speed-up in total simulation time
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TABLE VII. Simulation data from the [hmim]Cl simulations at 373 K. The first column of data is the ‘exact’ result and the last column uses
the α ′ method. See Sec. IV for definitions of the quantities.

Simulation [hmim]Cl:1 [hmim]Cl:2 [hmim]Cl:3 [hmim]Cl:4
UC −17.918(2) −17.917(2) −17.933(2) −17.944(2)

UC +UES
C −17.916 −17.915 −17.902 −17.950

σSC
/σUC

0.0015 0.0025 0.030 0.048
UFinal −23.322 −23.321 −23.312 −23.360
F rms

T 50.11(3) 50.08(3) 50.03(2) 49.91(2)
F rms

C 31.53 31.53 31.36 31.20
log10(∆F ) −3.19 −3.00 −2.00 -2.01
FKP

k /FES
k

0.8 0.8 0.7 -
FKP

r /FES
r 0.7 0.7 0.8 0.8

PI 3.25(1) 3.24(1) 3.38(1) 3.54(1)
PFinal 0.17 0.15 0.12 0.48
Pem −10.23 −10.23 −10.22 −10.24

P
ES,k
em 0.00 0.00 0.00 -

P
ES,r
em 0.00 0.00 0.00 0.00

Pmol
C −10.21 −10.21 −10.00 −9.81

P
mol,ES,k
C −0.01 −0.02 −0.20 -

P
mol,ES,r
C 0.00 0.00 −0.02 −0.03

∆P 0.00 0.00 0.00 0.40
k-space speed up 1 1.6 7.9 38

for the :2-:4 cases relative to the :1 ‘exact’ reference simu-
lation is 2.2,3.9 and 4.9. For the melt these values are 1.4,
3.1 amd 3.7. For TIP3P water, they are 1.4, 2.1 and 2.5, and
for [hmim]Cl these numbers are 1.07, 1.36 and 1.43. There-
fore for the simple CsI systems the overall speed enhancement
from the α ′ method is notable, by a factor of 4.9 for the crystal
but 3.7 for the melt, because the crystal needed significantly
more k-vectors for comparable accuracy. For the more com-
plex molecular systems, the overall speed increase is more
modest. For TIP3P water, and [hmim]Cl, the number of real
space interactions per site is double that for the CsI systems,
see N(rc) in Table II, which means that the fraction of CPU
time devoted to the k-space terms is reduced, and there is less
scope for α ′ improvement in this case. The [hmim]Cl system
shows little overall speed up, as the constraints also take up a
significant amount of CPU time, and can be considered to be
part of the r-space CPU. Also note that Nopt(kc) in Table III
is half the value for [hmim]Cl than for the CsI crystal, which
means that there is less potential for k-space speed up for this
system. Also only 75% of the [hmim]Cl sites are charged,
and only 75% are involved in k-space CPU, but 100% of sites
are involved in the r-space CPU consumption. It should be
noted that as MD systems get larger, the proportion of time
spent in k-space force evaluation increases, and so the speed
improvement due to the α ′ method will be more pronounced.

V. CONCLUSIONS

A new and computationally much faster approximation
to the exact Ewald (GEw) result has been formulated and
demonstrated to provide a significant reduction in the time it
takes to compute the reciprocal space series, by reducing the
number of k-vectors required. This method is referred to as

the α ′ method, and is summarized in Eq. (25). This procedure
for some of the properties (e.g., the forces and pressure) and
chemical systems studied gives the perhaps surprising trend
that the exact result is approached as the magnitude of the re-
ciprocal space cut-off vector decreases.

An in situ extended shell (ES) method for quickly, but ac-
curately, finding long range energy, force and pressure correc-
tions within GEw simulations has been implemented in the
simulation codes (these do not affect the dynamics of the sys-
tem). This enables new classes of GEw and α ′ simulations
to be carried out, with short rc and very low kc values. Such
charged particle simulations are very fast, and only consume
about 3 times the CPU of corresponding LJ particle simula-
tions, with little compromise being introduced to the accuracy
of the results.

The tuning of GEw simulation parameters has been im-
proved by using the perturbation forces described by Eq. (36).
These are more accurate than Kolafa-Perram estimates, and
also take into account any unphysical smoothing forces
needed to integrate correctly the equations of motion, and so
virtually eliminate simulation drift.

Accurate pressure calculations were a particular focus of
this work, and the quantity ∆P (see Eq. (30)) represents a
stringent test of how closely any charged particle simulation
obeys Coulomb’s 1/r law. It is found that GEw simulations
that employ a short rc and very low kc do continue to im-
plement accurately the 1/r law, provided ES corrections are
applied. There is a slight deviation away from the 1/r law for
α ′ simulations, which is not a surprise as the method is an ap-
proximation to the formally correct GEw method, but the re-
sulting pressure deviations are minor compared to typical val-
ues obtained by MD for such systems. Even commonly used
polynomial approximations for the erfc(x) function will cause
sufficient deviation from Coulomb’s 1/r law to be readily de-
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FIG. 6. The kc dependence of the integrator pressure, PI , (‘PI’) and
the final pressure (‘PF’) defined in Eq. (38) for (a) the CsI crystal, and
(b) the CsI melt, for GEw and α ′ (‘AP’) simulations. The GEw and
kc =

√
6 points are taken from Tables V and VI. The α ′ simulations

used the same α values as the :4 runs in Table III.

tectable by ∆P. Hence a new and more accurate approximation
to erfc(x) was developed as part of this work, see Appendix A
and Eq. (A1).

NVE MD simulations were performed on a range of ionic
and molecular systems, and all show similar behavior, sug-
gesting that low kc GEw and α ′ simulations are suitable for
a large variety of problems involving high dielectric constant
systems. The level of approximation introduced by the new
methods is sufficiently small that coarse grained modelling
(where interaction sites represent more than one atomic site)
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FIG. 7. The kc dependence of ∆P defined in Eq. (30) for GEw and α ′

(‘AP’) simulations for, (a) crystalline (‘C’) and melt (‘M’) CsI, and
(b) TIP3P water (‘W’) and [hmim]Cl (‘H’). The GEw and kc =

√
6

points are from data in Tables IV to VII. The α ′ simulations used the
same α values as the :4 runs in Table III.

could be carried out with confidence. In addition, the approxi-
mations in the nonCoulombic terms in many potential models
are probably a greater factor in governing agreement with ex-
periment than the use of the α ′ method.

Only minor modifications to an existing standard Ewald
code are needed to implement the α ′ method. The other
methodological improvements in this work are fairly simple
in concept, and so are not difficult to program in. A suf-
ficiently good implementation of the smoothing forces is
required when using the new methods to compensate for the
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FIG. 8. The time dependence of different energy quantities for the
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energy (UC) and the unphysical Ewald r-space smoothing energy
(SC). Points for SC have been shifted down 17.9 units to allow
comparison, since 〈SC〉 = +0.30777(6). Panel (b) compares the
NVE ensemble nominal Hamiltonian energy (E0) and the shadow-
Hamiltonian energy (Es). For each set of points, the maximum out-
liers are shown from a data set of 160,000 points.

r-space cut-offs in the potential to achieve accurate integration
of the equations of motion. The α ′ method could also be
used in Monte Carlo or Lattice Dynamics calculations, where
unphysical smoothing forces are not required. For medium
sized systems of up to ∼ 104 sites the new methods enable
very fast but reliable charged particle simulations to be
performed.
Further work is required to demonstrate the suitability of
the α ′ method for liquid interfacial systems, where accurate
modelling of surface tension effects may be of importance.
Also, it would be of interest to investigate using this method,

systems with low concentrations of ionic species in a low
dielectric constant medium (e.g., dilute solutions of alky-
lammonium salts in halogenated solvents) where long range
charge screening effects are much reduced compared to high
ionic strength aqueous solutions, and the high dielectric
constant systems considered in this study.
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Appendix A: A new polynomial approximation for erfc(x)

Compiler implementations of the intrinsic Fortran
ERFC(X) or complementary error function are slow to
evaluate erfc(x) to full 64 bit accuracy. A polynomial approx-
imation can be used to obtain a near order of magnitude speed
improvement. However, when using published approxima-
tions for erfc(x) designed for 32 bit IEEE-754 accuracy (such
as 7.1.28 in Ref. 31) then ∆P (see Eq. (30)) is not zero within
statistical pressure errors, even for accurate high kc GEw
simulations. This implies that these erfc(x) approximations
result in subtle changes in the GEw r-space interactions,
which cause them to deviate from the 1/r Coulomb law to
a degree that is easily detected. As a result, for this work,
a new and more accurate polynomial approximation for the
complementary error function has been derived by a process
of nonlinear least squares fitting to a set of closely separated
ERFC(X) values. The functional form adopted (see Ref. 32
for the series progression) is,

erfc(x) =

(

1+
9

∑
i=1

aix
i

)−32

a1 = 0.0352618572545339,
a2 = 0.0205159036756772,
a3 = 0.00392157470526262,
a4 = −0.000277792637346837,
a5 = 5.15742744370975×10−5,
a6 = 4.39647743338576×10−5,
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a7 = −1.68025752652442×10−5,
a8 = 3.22287284502991×10−6,
a9 = −2.45761793518861×10−7, (A1)

for x ≤ 4. The largest value of x needed for erfc(x) in the sim-
ulations performed in this study was 3.37, which was for the
CsI crystal case. Therefore the fit range chosen for the for-
mula in Eq. (A1) was adequate for all the simulations carried
out herein.

The maximum deviation from the exact result is almost two
orders of magnitude smaller than the fit mentioned above from
Ref. 31. Using Eq. (A1) satisfies the ∆P = 0 goal well within
statistical errors for accurate GEw simulations, which implies
the 1/r Coulomb law is now being accurately modeled with
this reparametization of the fit to the complementary error
function. Derivatives of Eq. (A1), for evaluating forces and
smoothing function coefficients, can be determined using a
symbolic algebra package.
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